Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 20(5): 2803-2812, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635616

RESUMO

We report on the bistability in spin states of spin crossover (SCO) compound Fe(phen)2(NCS)2 in polymer (polypyrrole) by frequency (1-100 kHz) and temperature dependent (305-457 K) electrical conductivity measurements. The structure and growth of SCO compounds in conducting polymer are obtained by scanning electron microscopy, X-ray diffraction and optical absorption measurements. The thermal dependence of ac conductivity σ(ω) shows the clear formation of a hysteresis loop in its cooling and heating cycle due to the difference in conductivity in high spin and low spin state. The size, shape and width of the hysteresis loops are found to be critically dependent on the applied frequency and/or the ratio between SCO and polymer. The ac conductivity is found to exhibit a dispersive behavior following Jonscher's law: σ(ω) ∝ ωn below a critical frequency ωc, above which it is found to monotonically decrease with increasing frequency. The thermal dependence of the exponent n and ωc is also explored. The charge transport phenomena are explained in the framework of hopping of charge carriers. The data reveals that addition of polymer can play an important role to tune the conductivity of SCO compounds and its spin state dependence characteristics which may be quite helpful for fabricating future spin-based devices. Temperature dependent magnetic susceptibility measurement also confirms the spin transition behavior of the SCO/ppy composite samples. These SCO/ppy composite samples can be taken as the reliable nanomaterials fabricated with the concept of future spin based nanoarchitectonics.

2.
J Nanosci Nanotechnol ; 18(1): 347-352, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768852

RESUMO

Spin-state switching mechanism is investigated by measuring the temperature of the electrical conductivity of spin crossover (SCO) material Fe(phen)2(NCS)2 thin films grown on glass, quartz and silicon substrates. The morphology characterized by scanning electron microscopy, clearly reveals the growth of thin films of thickness ~300 nm comprising of nanocrystals, size and distribution of which is dependent on the nature of substrates. The film on quartz is found to have the most uniform growth of nanocrystals of size ~22 nm with a homogeneous distribution. All the films retain the orthorhombic crystal structure as that of bulk with slight distortions in lattice plausibly arising out of the strain. Spin state switching between LS and HS is clearly revealed by the hysteresis loop observed in the temperature dependence of the electrical conductivity in its heating and cooling cycle. The critical temperature of transition between HS and LS states is found to be 162 K, 193 K and 217 K for film on glass, quartz and Si respectively. Film on quartz is found to exhibit a wide hysteresis loop of width ~60 K while that of on silicon exhibits higher transition temperature with narrow hysteresis loop ~14 K. The results are found to be quite inspiring to tune the SCO characteristics to develop molecular switch and memory devices close to room temperature.

3.
J Nanosci Nanotechnol ; 13(6): 4090-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862453

RESUMO

We report on the experimental observation of pronounced multiferroicity in BiFeO3 nanocrystals (size approximately 40 nm) at room temperature. Large scale BiFeO3 nanocrystals are synthesized using a low temperature chemical route and further stabilized with oleic acid. The nanocrystals exhibit a significant distortion in lattice parameter c compared to the bulk. Oleic acid plays an important role in reducing oxygen vacancies and Fe2+ ions at the nanocrystal surface giving rise to a high resistivity (approximately 10(10) omega-cm at 300 K) of the sample. The direct band gap of nanocrystals is measured to be approximately 4.2 eV (about 1.5 times the bulk value) suggesting a strong quantum confinement effect. The nanocrystals show a remarkably high spontaneous saturation magnetization approximately 4.39 emu/g along with a prominent ferroelectric hysteresis loop at room temperature. Particle size effect leading to the appearance of large number of uncompensated spins and suppression of modulated spin structure have resulted a strong spontaneous magnetization in such nanoscale multiferroic materials.

4.
Langmuir ; 29(24): 7334-43, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23594344

RESUMO

Ordered arrays of metal nanoparticles are important for nanoelectronic and nanophotonic applications. Here, we report the formation of self-assembled arrays of gold nanoparticles on molecular layers of diacetylene compounds on a MoS2(0001) substrate. The arrangement of gold nanoparticles is observed using scanning tunneling microscopy. When gold is deposited on a self-assembled monolayer of 10,12-nonacosadiynoic acid or 10,12-octadecadiynoic acid on a MoS2(0001) substrate, the ordered array of diacetylene moieties in the molecular layer serves as a template for the formation of ordered arrays of gold nanoparticles. In contrast, when gold is deposited on a pristine MoS2(0001) surface or on a molecular layer of stearic acid, the gold nanoparticles are randomly distributed on the surface. It is found that the arrangement of gold nanoparticles is largely determined by the deposition rate; faster deposition results in more ordered arrays of gold nanoparticles. Our observations confirm the role of unsaturated π systems in molecules acting as a template for the regular arrangement of gold nanoparticles; this work will open up new possibilities for interfacial nanoarchitectonics.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia de Tunelamento
5.
Nanoscale ; 4(10): 3013-28, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22517409

RESUMO

Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.

6.
ACS Appl Mater Interfaces ; 4(1): 205-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22141428

RESUMO

Spontaneous magnetization measured in the temperature range 5-300 K with high ferromagnetic transition temperature (T(c)) has been observed in both undoped and Mn doped (2-8 mol %) PbS nanowires (diameter 30 nm) in polymer. For undoped sample, we find T(c) ~ 290 K while for doped samples T(c) varies between 310-340 K depending on Mn concentrations. Both T(c) and coercive fields are critically dependent on Mn concentrations. Coercive fields show a T(0.5) dependence with temperature for a moderate concentration of Mn (4 mol %) in PbS while it deviates from T(0.5) behavior for higher Mn concentrations. Anionic defects arising out of nonstoichiometric growth is solely responsible for the observed magnetism in undoped PbS nanowires. The role of intrinsic strain along with reduced dimensionality in determining such high T(c) and overall magnetizations has been discussed.

7.
J Am Chem Soc ; 133(21): 8227-33, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21548552

RESUMO

Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed.

8.
ACS Nano ; 5(4): 2779-86, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21401050

RESUMO

Spontaneous chain polymerization of molecules initiated by a scanning tunneling microscope tip is studied with a focus on its rate-determining factors. Such chain polymerization that happens in self-assembled monolayers (SAM) of diacetylene compound molecules, which results in a π-conjugated linear polydiacetylene nanowire, varies in its rate P depending on domains in the SAM and substrate materials. While the arrangement of diacetylene molecules is identical in every domain on a graphite substrate, it varies in different domains on a MoS(2) substrate. This structural variation enables us to investigate how P is affected by molecular geometry. An important determining factor of P is the distance between two carbon atoms which are to be bound by polymerization reaction, R; as R decreases by 0.1 nm, P increases ∼2 times. P for a MoS(2) substrate is ∼4 times higher (with the same value of R) than that for a graphite substrate because of higher mobility of molecules. The exciting correlation of the chain polymerization rate to the geometrical structure of the diacetylene molecules brings a deeper understanding of the mechanism of chain polymerization kinetics. In addition, the fabrication of one-dimensional conjugated polymer nanowires on a semiconducting MoS(2) substrate as demonstrated here may be of immense importance in the realization of future molecular devices.

9.
J Nanosci Nanotechnol ; 11(11): 10234-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22413370

RESUMO

We report here fabrication of silver (0 to 1.76 mol%) doped PbS nanowires (radius r approximately 1.75 nm) in polymer by a simple wet chemical process. An X-ray photoelectron spectroscopy study clearly confirms the possibility of silver (Ag) doping in PbS nanowires. Both absorption and photoluminescence spectra reveal very strong quantum confinement effect in PbS nanowires as expected for a r/Bohr radius ratio approximately 0.0972 nm. Visible excitonic emission is observed at room temperature in the photoluminescence spectra of undoped and silver doped PbS nanowires in polymer. The excitonic emission is appreciably blue-shifted when doped by silver (1.76 mol%) indicating strong modification of the electronic states by magnetic silver ions. While Ag2+ centers at the substitutional lattice site show an emission band around 525 nm, Ag0 at the interstitial site act as nonradiative recombination centers. Effect of silver doping on the luminescence intensity is also discussed.

10.
Langmuir ; 21(9): 4175-9, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15835991

RESUMO

Oils containing both fluorescent semiconductor and magnetic oxide nanoparticles are used to produce oil in water emulsions. This technique produces oil droplets with homogeneous fluorescence and high magnetic nanoparticle concentrations. The optical properties of the oil droplets are studied as a function of the droplet sizes for various concentrations of fluorescent and magnetic nanoparticles. For all concentrations tested, we find a linear variation of the droplet fluorescent intensity as a function of the droplet volume. For a given size and a given quantum dot (QD) concentration, the droplet fluorescence intensity drops sharply as a function of the magnetic nanoparticle concentration. We show that this decrease is due mainly to the strong absorption cross section of the magnetic nanoparticles and to a lesser extent to the dynamic and static quenching of the QD fluorescence. The role of the iron oxide nanoparticle localization in the droplet (surface versus volume) is also discussed.


Assuntos
Emulsões/química , Compostos Férricos/química , Magnetismo , Nanotecnologia , Óleos/química , Adsorção , Fluorescência , Microscopia de Fluorescência , Nanoestruturas , Tamanho da Partícula , Pontos Quânticos , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...